Markov regime-switching Beta--EGARCH

C-Tier
Journal: Applied Economics
Year: 2017
Volume: 49
Issue: 47
Pages: 4793-4805

Authors (2)

Szabolcs Blazsek (Mercer University) Han-Chiang Ho (not in RePEc)

Score contribution per author:

0.503 = (α=2.01 / 2 authors) × 0.5x C-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We suggest a Markov regime-switching (MS) Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) model for U.S. stock returns. We compare the in-sample statistical performance of the MS Beta-t-EGARCH model with that of the single-regime Beta-t-EGARCH model. For both models we consider leverage effects for conditional volatility. We use data from the Standard Poor’s 500 (S&P 500) index and also a random sample that includes 50 components of the S&P 500. We study the outlier-discounting property of the single-regime Beta-t-EGARCH and MS Beta-t-EGARCH models. For the S&P 500, we show that for the MS Beta-t-EGARCH model extreme observations are discounted more for the low-volatility regime than for the high-volatility regime. The conditions of consistency and asymptotic normality of the maximum likelihood estimator are satisfied for both the single-regime and MS Beta-t-EGARCH models. All likelihood-based in-sample statistical performance metrics suggest that the MS Beta-t-EGARCH model is superior to the single-regime Beta-t-EGARCH model. We present an application to the out-of-sample density forecast performance of both models. The results show that the density forecast performance of the MS Beta-t-EGARCH model is superior to that of the single-regime Beta-t-EGARCH model.

Technical Details

RePEc Handle
repec:taf:applec:v:49:y:2017:i:47:p:4793-4805
Journal Field
General
Author Count
2
Added to Database
2026-01-24