A comprehensive evaluation of macroeconomic forecasting methods

B-Tier
Journal: International Journal of Forecasting
Year: 2019
Volume: 35
Issue: 4
Pages: 1226-1239

Score contribution per author:

0.670 = (α=2.01 / 3 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We employ datasets for seven developed economies and consider four classes of multivariate forecasting models in order to extend and enhance the empirical evidence in the macroeconomic forecasting literature. The evaluation considers forecasting horizons of between one quarter and two years ahead. We find that the structural model, a medium-sized DSGE model, provides accurate long-horizon US and UK inflation forecasts. We strike a balance between being comprehensive and producing clear messages by applying meta-analysis regressions to 2,976 relative accuracy comparisons that vary with the forecasting horizon, country, model class and specification, number of predictors, and evaluation period. For point and density forecasting of GDP growth and inflation, we find that models with large numbers of predictors do not outperform models with 13–14 hand-picked predictors. Factor-augmented models and equal-weighted combinations of single-predictor mixed-data sampling regressions are a better choice for dealing with large numbers of predictors than Bayesian VARs.

Technical Details

RePEc Handle
repec:eee:intfor:v:35:y:2019:i:4:p:1226-1239
Journal Field
Econometrics
Author Count
3
Added to Database
2026-01-25