Nonparametric estimation of conditional VaR and expected shortfall

A-Tier
Journal: Journal of Econometrics
Year: 2008
Volume: 147
Issue: 1
Pages: 120-130

Authors (2)

Cai, Zongwu (University of Kansas) Wang, Xian (not in RePEc)

Score contribution per author:

2.011 = (α=2.01 / 2 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper considers a new nonparametric estimation of conditional value-at-risk and expected shortfall functions. Conditional value-at-risk is estimated by inverting the weighted double kernel local linear estimate of the conditional distribution function. The nonparametric estimator of conditional expected shortfall is constructed by a plugging-in method. Both the asymptotic normality and consistency of the proposed nonparametric estimators are established at both boundary and interior points for time series data. We show that the weighted double kernel local linear conditional distribution estimator has the advantages of always being a distribution, continuous, and differentiable, besides the good properties from both the double kernel local linear and weighted Nadaraya-Watson estimators. Moreover, an ad hoc data-driven fashion bandwidth selection method is proposed, based on the nonparametric version of the Akaike information criterion. Finally, an empirical study is carried out to illustrate the finite sample performance of the proposed estimators.

Technical Details

RePEc Handle
repec:eee:econom:v:147:y:2008:i:1:p:120-130
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-25