Weak Convergence to a Matrix Stochastic Integral with Stable Processes

B-Tier
Journal: Econometric Theory
Year: 1997
Volume: 13
Issue: 4
Pages: 506-528

Score contribution per author:

2.011 = (α=2.01 / 1 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper generalizes the univariate results of Chan and Tran (1989, Econometric Theory 5, 354–362) and Phillips (1990, Econometric Theory 6, 44–62) to multivariate time series. We develop the limit theory for the least-squares estimate of a VAR(l) for a random walk with independent and identically distributed errors and for I(1) processes with weakly dependent errors whose distributions are in the domain of attraction of a stable law. The limit laws are represented by functional of a stable process. A semiparametric correction is used in order to asymptotically eliminate the “bias” term in the limit law. These results are also an extension of the multivariate limit theory for square-integrable disturbances derived by Phillips and Durlauf (1986, Review of Economic Studies 53, 473–495). Potential applications include tests for multivariate unit roots and cointegration.

Technical Details

RePEc Handle
repec:cup:etheor:v:13:y:1997:i:04:p:506-528_00
Journal Field
Econometrics
Author Count
1
Added to Database
2026-01-25