Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
This paper addresses the issue of optimal inference for parameters that are partially identified in models with moment inequalities. There currently exists a variety of inferential methods for use in this setting. However, the question of choosing optimally among contending procedures is unresolved. In this paper, I first consider a canonical large deviations criterion for optimality and show that inference based on the empirical likelihood ratio statistic is optimal. Second, I introduce a new empirical likelihood bootstrap that provides a valid resampling method for moment inequality models and overcomes the implementation challenges that arise as a result of non-pivotal limit distributions. Lastly, I analyze the finite sample properties of the proposed framework using Monte Carlo simulations. The simulation results are encouraging.