Robust Inference With Multiway Clustering

A-Tier
Journal: Journal of Business & Economic Statistics
Year: 2011
Volume: 29
Issue: 2
Pages: 238-249

Score contribution per author:

1.341 = (α=2.01 / 3 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

In this article we propose a variance estimator for the OLS estimator as well as for nonlinear estimators such as logit, probit, and GMM. This variance estimator enables cluster-robust inference when there is two-way or multiway clustering that is nonnested. The variance estimator extends the standard cluster-robust variance estimator or sandwich estimator for one-way clustering (e.g., Liang and Zeger 1986; Arellano 1987) and relies on similar relatively weak distributional assumptions. Our method is easily implemented in statistical packages, such as Stata and SAS, that already offer cluster-robust standard errors when there is one-way clustering. The method is demonstrated by a Monte Carlo analysis for a two-way random effects model; a Monte Carlo analysis of a placebo law that extends the state--year effects example of Bertrand, Duflo, and Mullainathan (2004) to two dimensions; and by application to studies in the empirical literature where two-way clustering is present.

Technical Details

RePEc Handle
repec:taf:jnlbes:v:29:y:2011:i:2:p:238-249
Journal Field
Econometrics
Author Count
3
Added to Database
2026-01-25