Simulated Non-Parametric Estimation of Dynamic Models

S-Tier
Journal: Review of Economic Studies
Year: 2009
Volume: 76
Issue: 2
Pages: 413-450

Score contribution per author:

4.022 = (α=2.01 / 2 authors) × 4.0x S-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper introduces a new class of parameter estimators for dynamic models, called simulated non-parametric estimators (SNEs). The SNE minimizes appropriate distances between non-parametric conditional (or joint) densities estimated from sample data and non-parametric conditional (or joint) densities estimated from data simulated out of the model of interest. Sample data and model-simulated data are smoothed with the same kernel, which considerably simplifies bandwidth selection for the purpose of implementing the estimator. Furthermore, the SNE displays the same asymptotic efficiency properties as the maximum-likelihood estimator as soon as the model is Markov in the observable variables. The methods introduced in this paper are fairly simple to implement, and possess finite sample properties that are well approximated by the asymptotic theory. We illustrate these features within typical estimation problems that arise in financial economics. Copyright , Wiley-Blackwell.

Technical Details

RePEc Handle
repec:oup:restud:v:76:y:2009:i:2:p:413-450
Journal Field
General
Author Count
2
Added to Database
2026-01-24