Nonlinear factor models for network and panel data

A-Tier
Journal: Journal of Econometrics
Year: 2021
Volume: 220
Issue: 2
Pages: 296-324

Authors (3)

Chen, Mingli (not in RePEc) Fernández-Val, Iván (Boston University) Weidner, Martin (not in RePEc)

Score contribution per author:

1.341 = (α=2.01 / 3 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

Factor structures or interactive effects are convenient devices to incorporate latent variables in panel data models. We consider fixed effect estimation of nonlinear panel single-index models with factor structures in the unobservables, which include logit, probit, ordered probit and Poisson specifications. We establish that fixed effect estimators of model parameters and average partial effects have normal distributions when the two dimensions of the panel grow large, but might suffer from incidental parameter bias. We also show how models with factor structures can be applied to capture important features of network data such as reciprocity, degree heterogeneity, homophily in latent variables, and clustering. We illustrate this applicability with an empirical example to the estimation of a gravity equation of international trade between countries using a Poisson model with multiple factors.

Technical Details

RePEc Handle
repec:eee:econom:v:220:y:2021:i:2:p:296-324
Journal Field
Econometrics
Author Count
3
Added to Database
2026-01-25