CHARACTERISTIC FUNCTION–BASED TESTING FOR MULTIFACTOR CONTINUOUS-TIME MARKOV MODELS VIA NONPARAMETRIC REGRESSION

B-Tier
Journal: Econometric Theory
Year: 2010
Volume: 26
Issue: 4
Pages: 1115-1179

Authors (2)

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We develop a nonparametric regression-based goodness-of-fit test for multifactor continuous-time Markov models using the conditional characteristic function, which often has a convenient closed form or can be approximated accurately for many popular continuous-time Markov models in economics and finance. An omnibus test fully utilizes the information in the joint conditional distribution of the underlying processes and hence has power against a vast class of continuous-time alternatives in the multifactor framework. A class of easy-to-interpret diagnostic procedures is also proposed to gauge possible sources of model misspecification. All the proposed test statistics have a convenient asymptotic N(0, 1) distribution under correct model specification, and all asymptotic results allow for some data-dependent bandwidth. Simulations show that in finite samples, our tests have reasonable size, thanks to the dimension reduction in nonparametric regression, and good power against a variety of alternatives, including misspecifications in the joint dynamics, but the dynamics of each individual component is correctly specified. This feature is not attainable by some existing tests. A parametric bootstrap improves the finite-sample performance of proposed tests but with a higher computational cost.

Technical Details

RePEc Handle
repec:cup:etheor:v:26:y:2010:i:04:p:1115-1179_99
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-25