GENERALIZED AUTOREGRESSIVE CONDITIONAL CORRELATION

B-Tier
Journal: Econometric Theory
Year: 2008
Volume: 24
Issue: 6
Pages: 1554-1583

Authors (4)

McAleer, Michael Chan, Felix (not in RePEc) Hoti, Suhejla (University of Western Australi...) Lieberman, Offer (not in RePEc)

Score contribution per author:

0.503 = (α=2.01 / 4 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper develops a generalized autoregressive conditional correlation (GARCC) model when the standardized residuals follow a random coefficient vector autoregressive process. As a multivariate generalization of the Tsay (1987, Journal of the American Statistical Association 82, 590–604) random coefficient autoregressive (RCA) model, the GARCC model provides a motivation for the conditional correlations to be time varying. GARCC is also more general than the Engle (2002, Journal of Business & Economic Statistics 20, 339–350) dynamic conditional correlation (DCC) and the Tse and Tsui (2002, Journal of Business & Economic Statistics 20, 351–362) varying conditional correlation (VCC) models and does not impose unduly restrictive conditions on the parameters of the DCC model. The structural properties of the GARCC model, specifically, the analytical forms of the regularity conditions, are derived, and the asymptotic theory is established. The Baba, Engle, Kraft, and Kroner (BEKK) model of Engle and Kroner (1995, Econometric Theory 11, 122–150) is demonstrated to be a special case of a multivariate RCA process. A likelihood ratio test is proposed for several special cases of GARCC. The empirical usefulness of GARCC and the practicality of the likelihood ratio test are demonstrated for the daily returns of the Standard and Poor's 500, Nikkei, and Hang Seng indexes.

Technical Details

RePEc Handle
repec:cup:etheor:v:24:y:2008:i:06:p:1554-1583_08
Journal Field
Econometrics
Author Count
4
Added to Database
2026-01-25