Some theoretical results on forecast combinations

B-Tier
Journal: International Journal of Forecasting
Year: 2018
Volume: 34
Issue: 1
Pages: 64-74

Authors (2)

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper proposes a framework for the analysis of the theoretical properties of forecast combination, with the forecast performance being measured in terms of mean squared forecast errors (MSFE). Such a framework is useful for deriving all existing results with ease. In addition, it also provides insights into two forecast combination puzzles. Specifically, it investigates why a simple average of forecasts often outperforms forecasts from single models in terms of MSFEs, and why a more complicated weighting scheme does not always perform better than a simple average. In addition, this paper presents two new findings that are particularly relevant in practice. First, the MSFE of a forecast combination decreases as the number of models increases. Second, the conventional approach to the selection of optimal models, based on a simple comparison of MSFEs without further statistical testing, leads to a biased selection.

Technical Details

RePEc Handle
repec:eee:intfor:v:34:y:2018:i:1:p:64-74
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-25