Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
This paper proposes a novel approach for dealing with the 'curse of dimensionality' in the case of infinite-dimensional vector autoregressive (IVAR) models. It is assumed that each unit or variable in the IVAR is related to a small number of neighbors and a large number of non-neighbors. The neighborhood effects are fixed and do not change with the number of units (N), but the coefficients of non-neighboring units are restricted to vanish in the limit as N tends to infinity. Problems of estimation and inference in a stationary IVAR model with an unknown number of unobserved common factors are investigated. A cross-section augmented least-squares (CALS) estimator is proposed and its asymptotic distribution is derived. Satisfactory small-sample properties are documented by Monte Carlo experiments. An empirical illustration shows the statistical significance of dynamic spillover effects in modeling of US real house prices across the neighboring states.