A babel of web-searches: Googling unemployment during the pandemic

B-Tier
Journal: Labour Economics
Year: 2022
Volume: 74
Issue: C

Authors (4)

Score contribution per author:

0.503 = (α=2.01 / 4 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

Researchers are increasingly exploiting web-searches to study phenomena for which timely and high-frequency data are not readily available. We propose a data-driven procedure which, exploiting machine learning techniques, solves the issue of identifying the list of queries linked to the phenomenon of interest, even in a cross-country setting. Queries are then aggregated in an indicator which can be used for causal inference. We apply this procedure to construct a search-based unemployment index and study the effect of lock-downs during the first wave of the covid-19 pandemic. In a Difference-in-Differences analysis, we show that the indicator rose significantly and persistently in the aftermath of lock-downs. This is not the case when using unprocessed (raw) web search data, which might return a partial figure of the labour market dynamics following lock-downs.

Technical Details

RePEc Handle
repec:eee:labeco:v:74:y:2022:i:c:s0927537121001329
Journal Field
Labor
Author Count
4
Added to Database
2026-01-25