A class of multipartner matching markets with a strong lattice structure

B-Tier
Journal: Economic Theory
Year: 2002
Volume: 19
Issue: 4
Pages: 737-746

Score contribution per author:

2.011 = (α=2.01 / 1 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

For a two-sided multipartner matching model where agents are given by path-independent choice functions and no quota restrictions, Blair [7] had shown that stable matchings always exist and form a lattice. However, the lattice operations were not simple and not distributive. Recently Alkan [3] showed that if one introduces quotas together with a monotonicity condition then the set of stable matchings is a distributive lattice under a natural definition of supremum and infimum for matchings. In this study we show that the quota restriction can be removed and replaced by a more general condition named cardinal monotonicity and all the structural properties derived in [3] still hold. In particular, although there are no exogenous quotas in the model there is endogenously a sort of quota; more precisely, each agent has the same number of partners in every stable matching. Stable matchings also have the polarity property (supremum with respect to one side is identical to infimum with respect to the other side) and a property we call {\it complementarity}.

Technical Details

RePEc Handle
repec:spr:joecth:v:19:y:2002:i:4:p:737-746
Journal Field
Theory
Author Count
1
Added to Database
2026-01-24