Testing the assumptions behind importance sampling

A-Tier
Journal: Journal of Econometrics
Year: 2009
Volume: 149
Issue: 1
Pages: 2-11

Score contribution per author:

1.341 = (α=2.01 / 3 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

Importance sampling is used in many areas of modern econometrics to approximate unsolvable integrals. Its reliable use requires the sampler to possess a variance, for this guarantees a square root speed of convergence and asymptotic normality of the estimator of the integral. However, this assumption is seldom checked. In this paper we use extreme value theory to empirically assess the appropriateness of this assumption. Our main application is the stochastic volatility model, where importance sampling is commonly used for maximum likelihood estimation of the parameters of the model.

Technical Details

RePEc Handle
repec:eee:econom:v:149:y:2009:i:1:p:2-11
Journal Field
Econometrics
Author Count
3
Added to Database
2026-01-25