A medium-N approach to macroeconomic forecasting

C-Tier
Journal: Economic Modeling
Year: 2012
Volume: 29
Issue: 4
Pages: 1099-1105

Authors (2)

Score contribution per author:

0.503 = (α=2.01 / 2 authors) × 0.5x C-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper considers methods for forecasting macroeconomic time series in a framework where the number of predictors, N, is too large to apply traditional regression models but not sufficiently large to resort to statistical inference based on double asymptotics. Our interest is motivated by a body of empirical research suggesting that popular data-rich prediction methods perform best when N ranges from 20 to 40. In order to accomplish our goal, we resort to partial least squares and principal component regression to consistently estimate a stable dynamic regression model with many predictors as only the number of observations, T, diverges. We show both by simulations and empirical applications that the considered methods, especially partial least squares, compare well to models that are widely used in macroeconomic forecasting.

Technical Details

RePEc Handle
repec:eee:ecmode:v:29:y:2012:i:4:p:1099-1105
Journal Field
General
Author Count
2
Added to Database
2026-01-25