Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
Many statistical and econometric learning methods rely on Bayesian ideas. When applied in a frequentist setting, their precision is often assessed using the posterior variance. This is permissible asymptotically, but not necessarily in finite samples. We explore this issue focusing on weighted-average least squares (WALS), a Bayesian-frequentist ‘fusion’. Exploiting the sampling properties of the posterior mean in the normal location model, we derive estimators of the finite-sample bias and variance of WALS. We study the performance of the proposed estimators in an empirical application and a closely related Monte Carlo experiment which analyze the impact of legalized abortion on crime.