Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
Rational expectations has been the dominant way to model expectations, but the literature has quickly moved to a more realistic assumption of boundedly rational learning where agents are assumed to use only a limited set of information to form their expectations. A standard assumption is that agents form expectations by using the correctly specified reduced form model of the economy, the minimal state variable solution (MSV), but they do not know the parameters. However, with medium-sized and large models the closed-form MSV solutions are difficult to attain given the large number of variables that could be included. Therefore, agents base expectations on a misspecified MSV solution. In contrast, we assume that agents know the deep parameters of their own optimising frameworks. However, they are not assumed to know the structure nor the parameterisation of the rest of the economy, nor do they know the stochastic processes generating shocks hitting the economy. In addition, agents are assumed to know that the changes (or the growth rates) of fundament variables can be modelled as stationary ARMA(p,q) processes, the exact form of which is not, however, known by agents. This approach avoids the complexities of dealing with a potential vast multitude of alternative misspecified MSVs.