Targeting humanitarian aid using administrative data: Model design and validation

A-Tier
Journal: Journal of Development Economics
Year: 2021
Volume: 148
Issue: C

Authors (7)

Altındağ, Onur (not in RePEc) O'Connell, Stephen D. (Emory University) Şaşmaz, Aytuğ (not in RePEc) Balcıoğlu, Zeynep (not in RePEc) Cadoni, Paola (not in RePEc) Jerneck, Matilda (not in RePEc) Foong, Aimee Kunze (not in RePEc)

Score contribution per author:

0.575 = (α=2.01 / 7 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We develop and assess the performance of an econometric prediction model that relies on administrative data held by international agencies to target over $380 million annually in unconditional cash transfers to Syrian refugees in Lebanon. Standard metrics of prediction accuracy suggest targeting using administrative data is comparable to a short-form Proxy Means Test, which requires a survey of the entire target population. We show that small differences in accuracy across approaches are largely attributable to a few data fields. These results are robust to a blind validation test performed on a random sample collected after the model derivation, as well as the type of estimator used for prediction. We discuss relative costs, which are likely to feature prominently when alternative approaches are considered in practice.

Technical Details

RePEc Handle
repec:eee:deveco:v:148:y:2021:i:c:s0304387820301395
Journal Field
Development
Author Count
7
Added to Database
2026-01-24