Forecasting Conditional Probabilities of Binary Outcomes under Misspecification

A-Tier
Journal: Review of Economics and Statistics
Year: 2016
Volume: 98
Issue: 4
Pages: 742-755

Score contribution per author:

1.341 = (α=2.01 / 3 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We consider constructing probability forecasts from a parametric binary choice model under a large family of loss functions (“scoring rules”). Scoring rules are weighted averages over the utilities that heterogeneous decision makers derive from a publicly announced forecast (Schervish, 1989). Using analytical and numerical examples, we illustrate howdifferent scoring rules yield asymptotically identical results if the model is correctly specified. Under misspecification, the choice of scoring rule may be inconsequential under restrictive symmetry conditions on the data-generating process. If these conditions are violated, typically the choice of a scoring rule favors some decision makers over others.

Technical Details

RePEc Handle
repec:tpr:restat:v:98:y:2016:i:4:p:742-755
Journal Field
General
Author Count
3
Added to Database
2026-01-25