Conditional beta pricing models: A nonparametric approach

B-Tier
Journal: Journal of Banking & Finance
Year: 2011
Volume: 35
Issue: 12
Pages: 3362-3382

Score contribution per author:

0.670 = (α=2.01 / 3 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We propose a two-stage procedure to estimate conditional beta pricing models that allows for flexibility in the dynamics of asset betas and market prices of risk (MPR). First, conditional betas are estimated nonparametrically for each asset and period using the time-series of previous data. Then, time-varying MPR are estimated from the cross-section of returns and betas. We prove the consistency and asymptotic normality of the estimators. We also perform Monte Carlo simulations for the conditional version of the three-factor model of Fama and French (1993) and show that nonparametrically estimated betas outperform rolling betas under different specifications of beta dynamics. Using return data on the 25 size and book-to-market sorted portfolios, we find that the nonparametric procedure produces a better fit of the three-factor model to the data, less biased estimates of MPR and lower pricing errors than the Fama–MacBeth procedure with betas estimated under several alternative parametric specifications.

Technical Details

RePEc Handle
repec:eee:jbfina:v:35:y:2011:i:12:p:3362-3382
Journal Field
Finance
Author Count
3
Added to Database
2026-01-25