LOCAL ASYMPTOTIC NORMALITY OF GENERAL CONDITIONALLY HETEROSKEDASTIC AND SCORE-DRIVEN TIME-SERIES MODELS

B-Tier
Journal: Econometric Theory
Year: 2023
Volume: 39
Issue: 5
Pages: 1067-1092

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

The paper establishes the local asymptotic normality property for general conditionally heteroskedastic time series models of multiplicative form, $\epsilon _t=\sigma _t(\boldsymbol {\theta }_0)\eta _t$ , where the volatility $\sigma _t(\boldsymbol {\theta }_0)$ is a parametric function of $\{\epsilon _{s}, s< t\}$ , and $(\eta _t)$ is a sequence of i.i.d. random variables with common density $f_{\boldsymbol {\theta }_0}$ . In contrast with earlier results, the finite dimensional parameter $\boldsymbol {\theta }_0$ enters in both the volatility and the density specifications. To deal with nondifferentiable functions, we introduce a conditional notion of the familiar quadratic mean differentiability condition which takes into account parameter variation in both the volatility and the errors density. Our results are illustrated on two particular models: the APARCH with asymmetric Student-t distribution, and the Beta-t-GARCH model, and are extended to handle a conditional mean.

Technical Details

RePEc Handle
repec:cup:etheor:v:39:y:2023:i:5:p:1067-1092_7
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-25