Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
We introduce a nonparametric estimator for local quantile treatment effects in the regression discontinuity (RD) design. The procedure uses local distribution regression to estimate the marginal distributions of the potential outcomes. We illustrate the procedure through Monte Carlo simulations and an application on the distributional effects of a universal pre-K program in Oklahoma. We find that participation in a pre-K program significantly raises the lower end and the middle of the distribution of test scores.