Semiparametric single-index panel data models with cross-sectional dependence

A-Tier
Journal: Journal of Econometrics
Year: 2015
Volume: 188
Issue: 1
Pages: 301-312

Score contribution per author:

1.341 = (α=2.01 / 3 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

In this paper, we consider a semiparametric single-index panel data model with cross-sectional dependence and stationarity. Meanwhile, we allow fixed effects to be correlated with the regressors to capture unobservable heterogeneity. Under a general spatial error dependence structure, we then establish some consistent closed-form estimates for both the unknown parameters and the link function for the case where both cross-sectional dimension (N) and temporal dimension (T) go to infinity. Rates of convergence and asymptotic normality are established for the proposed estimates. Our experience suggests that the proposed estimation method is simple and thus attractive for finite-sample studies and empirical implementations. Moreover, both the finite-sample performance and the empirical applications show that the proposed estimation method works well when the cross-sectional dependence exists in the data set.

Technical Details

RePEc Handle
repec:eee:econom:v:188:y:2015:i:1:p:301-312
Journal Field
Econometrics
Author Count
3
Added to Database
2026-01-25