EQUIVALENCE OF THE HIGHER ORDER ASYMPTOTIC EFFICIENCY OF k-STEP AND EXTREMUM STATISTICS

B-Tier
Journal: Econometric Theory
Year: 2002
Volume: 18
Issue: 5
Pages: 1040-1085

Score contribution per author:

2.011 = (α=2.01 / 1 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

It is well known that a one-step scoring estimator that starts from any N1/2-consistent estimator has the same first-order asymptotic efficiency as the maximum likelihood estimator. This paper extends this result to k-step estimators and test statistics for k ≥ 1, higher order asymptotic efficiency, and general extremum estimators and test statistics.The paper shows that a k-step estimator has the same higher order asymptotic efficiency, to any given order, as the extremum estimator toward which it is stepping, provided (i) k is sufficiently large, (ii) some smoothness and moment conditions hold, and (iii) a condition on the initial estimator holds.For example, for the Newton–Raphson k-step estimator based on an initial estimator in a wide class, we obtain asymptotic equivalence to integer order s provided 2k ≥ s + 1. Thus, for k = 1, 2, and 3, one obtains asymptotic equivalence to first, third, and seventh orders, respectively. This means that the maximum differences between the probabilities that the (N1/2-normalized) k-step and extremum estimators lie in any convex set are o(1), o(N−3/2), and o(N−3), respectively.

Technical Details

RePEc Handle
repec:cup:etheor:v:18:y:2002:i:05:p:1040-1085_18
Journal Field
Econometrics
Author Count
1
Added to Database
2026-01-24