Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
A semiorder can be thought of as a binary relation P for which there is a utility "u" representing it in the following sense: xPy iff u(x)-u(y) > 1. We argue that weak orders (for which indifference is transitive) can not be considered a successful approximation of semiorders; for instance, a utility function representing a semiorder in the manner mentioned above is almost unique, i.e. cardinal and not only ordinal. In this paper we deal with semiorders on a product space and their relation to given semiorders on the original spaces. Following the intuition of Rubinstein we find surprising results: with the appropriate framework, it turns out that a Savage-type expected utility requires significantly weaker axioms than it does in the context of weak orders.