Extreme returns and intensity of trading

B-Tier
Journal: Journal of Applied Econometrics
Year: 2019
Volume: 34
Issue: 7
Pages: 1121-1140

Authors (2)

Wei Lin (not in RePEc) Gloria González‐Rivera (not in RePEc)

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

Asymmetric information models of market microstructure claim that variables such as trading intensity are proxies for latent information on the value of financial assets. We consider the interval‐valued time series (ITS) of low/high returns and explore the relationship between these extreme returns and the intensity of trading. We assume that the returns (or prices) are generated by a latent process with some unknown conditional density. At each period of time, from this density, we have some random draws (trades) and the lowest and highest returns are the realized extreme observations of the latent process over the sample of draws. In this context, we propose a semiparametric model of extreme returns that exploits the results provided by extreme value theory. If properly centered and standardized extremes have well‐defined limiting distributions, the conditional mean of extreme returns is a nonlinear function of the conditional moments of the latent process and of the conditional intensity of the process that governs the number of draws. We implement a two‐step estimation procedure. First, we estimate parametrically the regressors that will enter into the nonlinear function, and in a second step we estimate nonparametrically the conditional mean of extreme returns as a function of the generated regressors. Unlike current models for ITS, the proposed semiparametric model is robust to misspecification of the conditional density of the latent process. We fit several nonlinear and linear models to the 5‐minute and 1‐minute low/high returns to seven major banks and technology stocks, and find that the nonlinear specification is superior to the current linear models and that the conditional volatility of the latent process and the conditional intensity of the trading process are major drivers of the dynamics of extreme returns.

Technical Details

RePEc Handle
repec:wly:japmet:v:34:y:2019:i:7:p:1121-1140
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-25