LIMIT THEOREMS FOR FACTOR MODELS

B-Tier
Journal: Econometric Theory
Year: 2021
Volume: 37
Issue: 5
Pages: 1034-1074

Authors (2)

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper establishes central limit theorems (CLTs) and proposes how to perform valid inference in factor models. We consider a setting where many counties/regions/assets are observed for many time periods, and when estimation of a global parameter includes aggregation of a cross-section of heterogeneous microparameters estimated separately for each entity. The CLT applies for quantities involving both cross-sectional and time series aggregation, as well as for quadratic forms in time-aggregated errors. This paper studies the conditions when one can consistently estimate the asymptotic variance, and proposes a bootstrap scheme for cases when one cannot. A small simulation study illustrates performance of the asymptotic and bootstrap procedures. The results are useful for making inferences in two-step estimation procedures related to factor models, as well as in other related contexts. Our treatment avoids structural modeling of cross-sectional dependence but imposes time-series independence.

Technical Details

RePEc Handle
repec:cup:etheor:v:37:y:2021:i:5:p:1034-1074_6
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-24