Stick-breaking autoregressive processes

A-Tier
Journal: Journal of Econometrics
Year: 2011
Volume: 162
Issue: 2
Pages: 383-396

Score contribution per author:

2.011 = (α=2.01 / 2 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper considers the problem of defining a time-dependent nonparametric prior for use in Bayesian nonparametric modelling of time series. A recursive construction allows the definition of priors whose marginals have a general stick-breaking form. The processes with Poisson-Dirichlet and Dirichlet process marginals are investigated in some detail. We develop a general conditional Markov Chain Monte Carlo (MCMC) method for inference in the wide subclass of these models where the parameters of the marginal stick-breaking process are nondecreasing sequences. We derive a generalised Pólya urn scheme type representation of the Dirichlet process construction, which allows us to develop a marginal MCMC method for this case. We apply the proposed methods to financial data to develop a semi-parametric stochastic volatility model with a time-varying nonparametric returns distribution. Finally, we present two examples concerning the analysis of regional GDP and its growth.

Technical Details

RePEc Handle
repec:eee:econom:v:162:y:2011:i:2:p:383-396
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-25