Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
In this paper, we complement joint time-series and cross-section convergence results derived in a companion paper Hahn, Kuersteiner, and Mazzocco (2016, Central Limit Theory for Combined Cross-Section and Time Series) by allowing for serial correlation in the time-series sample. The implications of our analysis are limiting distributions that have a well-known form of long-run variances for the time-series limit. We obtain these results at the cost of imposing strict stationarity for the time-series model and conditional independence between the time-series and cross-section samples. Our results can be applied to estimators that combine time-series and cross-section data in the presence of aggregate uncertainty in models with rationally forward-looking agents.