R-estimation in semiparametric dynamic location-scale models

A-Tier
Journal: Journal of Econometrics
Year: 2017
Volume: 196
Issue: 2
Pages: 233-247

Authors (2)

Hallin, Marc (Université Libre de Bruxelles) La Vecchia, Davide (not in RePEc)

Score contribution per author:

2.011 = (α=2.01 / 2 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We propose rank-based estimation (R-estimators) as an alternative to Gaussian quasi-likelihood and standard semiparametric estimation in time series models, where conditional location and/or scale depend on a Euclidean parameter of interest, while the unspecified innovation density is a nuisance. We show how to construct R-estimators achieving semiparametric efficiency at some predetermined reference density while preserving root-n consistency and asymptotic normality irrespective of the actual density. Contrary to the standard semiparametric estimators, our R-estimators neither require tangent space calculations nor innovation density estimation. Numerical examples illustrate their good performances on simulated and real data.

Technical Details

RePEc Handle
repec:eee:econom:v:196:y:2017:i:2:p:233-247
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-25