FIRST-ORDER ASYMPTOTIC THEORY FOR PARAMETRIC MISSPECIFICATION TESTS OF GARCH MODELS

B-Tier
Journal: Econometric Theory
Year: 2009
Volume: 25
Issue: 2
Pages: 364-410

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper develops a framework for the construction and analysis of parametric misspecification tests for generalized autoregressive conditional heteroskedastic (GARCH) models, based on first-order asymptotic theory. The principal finding is that estimation effects from the correct specification of the conditional mean (regression) function can be asymptotically nonnegligible. This implies that certain procedures, such as the asymmetry tests of Engle and Ng (1993, Journal of Finance 48, 1749–1777) and the nonlinearity test of Lundbergh and Teräsvirta (2002, Journal of Econometrics 110, 417–435), are asymptotically invalid. A second contribution is the proposed use of alternative tests for asymmetry and/or nonlinearity that, it is conjectured, should enjoy improved power properties. A Monte Carlo study supports the principal theoretical findings and also suggests that the new tests have fairly good size and very good power properties when compared with the Engle and Ng (1993) and Lundbergh and Teräsvirta (2002) procedures.

Technical Details

RePEc Handle
repec:cup:etheor:v:25:y:2009:i:02:p:364-410_09
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-25