Dynamic Censored Regression and the Open Market Desk Reaction Function

A-Tier
Journal: Journal of Business & Economic Statistics
Year: 2011
Volume: 29
Issue: 2
Pages: 228-237

Authors (2)

Score contribution per author:

2.011 = (α=2.01 / 2 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

The censored regression model and the Tobit model are standard tools in econometrics. This paper provides a formal asymptotic theory for dynamic time series censored regression when lags of the dependent variable have been included among the regressors. The central analytical challenge is to prove that the dynamic censored regression model satisfies stationarity and weak dependence properties if a condition on the lag polynomial holds. We show the formal asymptotic correctness of conditional maximum likelihood estimation of the dynamic Tobit model, and the correctness of Powell's least absolute deviations procedure for the estimation of the dynamic censored regression model. The paper is concluded with an application of the dynamic censored regression methodology to temporary purchases of the Open Market Desk. This article has supplementary material online.

Technical Details

RePEc Handle
repec:taf:jnlbes:v:29:y:2011:i:2:p:228-237
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-25