Characterization of the asymptotic distribution of semiparametric M-estimators

A-Tier
Journal: Journal of Econometrics
Year: 2010
Volume: 159
Issue: 2
Pages: 252-266

Score contribution per author:

2.011 = (α=2.01 / 2 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper develops a concrete formula for the asymptotic distribution of two-step, possibly non-smooth semiparametric M-estimators under general misspecification. Our regularity conditions are relatively straightforward to verify and also weaker than those available in the literature. The first-stage nonparametric estimation may depend on finite dimensional parameters. We characterize: (1) conditions under which the first-stage estimation of nonparametric components do not affect the asymptotic distribution, (2) conditions under which the asymptotic distribution is affected by the derivatives of the first-stage nonparametric estimator with respect to the finite-dimensional parameters, and (3) conditions under which one can allow non-smooth objective functions. Our framework is illustrated by applying it to three examples: (1) profiled estimation of a single index quantile regression model, (2) semiparametric least squares estimation under model misspecification, and (3) a smoothed matching estimator.

Technical Details

RePEc Handle
repec:eee:econom:v:159:y:2010:i:2:p:252-266
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-25