Linking Frequentist and Bayesian Change-Point Methods

A-Tier
Journal: Journal of Business & Economic Statistics
Year: 2024
Volume: 42
Issue: 4
Pages: 1155-1168

Score contribution per author:

1.341 = (α=2.01 / 3 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We show that the two-stage minimum description length (MDL) criterion widely used to estimate linear change-point (CP) models corresponds to the marginal likelihood of a Bayesian model with a specific class of prior distributions. This allows results from the frequentist and Bayesian paradigms to be bridged together. Thanks to this link, one can rely on the consistency of the number and locations of the estimated CPs and the computational efficiency of frequentist methods, and obtain a probability of observing a CP at a given time, compute model posterior probabilities, and select or combine CP methods via Bayesian posteriors. Furthermore, we adapt several CP methods to take advantage of the MDL probabilistic representation. Based on simulated data, we show that the adapted CP methods can improve structural break detection compared to state-of-the-art approaches. Finally, we empirically illustrate the usefulness of combining CP detection methods when dealing with long time series and forecasting.

Technical Details

RePEc Handle
repec:taf:jnlbes:v:42:y:2024:i:4:p:1155-1168
Journal Field
Econometrics
Author Count
3
Added to Database
2026-01-24