FRED-SD: A real-time database for state-level data with forecasting applications

B-Tier
Journal: International Journal of Forecasting
Year: 2023
Volume: 39
Issue: 1
Pages: 279-297

Authors (4)

Score contribution per author:

0.503 = (α=2.01 / 4 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We construct a real-time dataset (FRED-SD) with vintage data for the U.S. states that can be used to forecast both state-level and national-level variables. Our dataset includes approximately 28 variables per state, including labor-market, production, and housing variables. We conduct two sets of real-time forecasting exercises. The first forecasts state-level labor-market variables using five different models and different levels of industrially disaggregated data. The second forecasts a national-level variable exploiting the cross-section of state data. The state-forecasting experiments suggest that large models with industrially disaggregated data tend to have higher predictive ability for industrially diversified states. For national-level data, we find that forecasting and aggregating state-level data can outperform a random walk but not an autoregression. We compare these real-time data experiments with forecasting experiments using final-vintage data and find very different results. Because these final-vintage results are obtained with revised data that would not have been available at the time the forecasts would have been made, we conclude that the use of real-time data is essential for drawing proper conclusions about state-level forecasting models.

Technical Details

RePEc Handle
repec:eee:intfor:v:39:y:2023:i:1:p:279-297
Journal Field
Econometrics
Author Count
4
Added to Database
2026-01-25