Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
A smooth demand function is generated by utility maximization if and only if its Slutsky matrix is symmetric and negative semidefinite. Slutsky symmetry is equivalent to absence of smooth revealed preference cycles, of Hurwicz and Richter (1979). To observe such a cycle would require a continuum of data. We characterize Slutsky symmetry by means of discrete antisymmetric revealed preference cycles consisting of either three or four observations.