Lower Bounds on Approximation Errors to Numerical Solutions of Dynamic Economic Models

S-Tier
Journal: Econometrica
Year: 2017
Volume: 85
Pages: 991-1012

Score contribution per author:

2.681 = (α=2.01 / 3 authors) × 4.0x S-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We propose a novel methodology for evaluating the accuracy of numerical solutions to dynamic economic models. It consists in constructing a lower bound on the size of approximation errors. A small lower bound on errors is a necessary condition for accuracy: If a lower error bound is unacceptably large, then the actual approximation errors are even larger, and hence, the approximation is inaccurate. Our lower‐bound error analysis is complementary to the conventional upper‐error (worst‐case) bound analysis, which provides a sufficient condition for accuracy. As an illustration of our methodology, we assess approximation in the first‐ and second‐order perturbation solutions for two stylized models: a neoclassical growth model and a new Keynesian model. The errors are small for the former model but unacceptably large for the latter model under some empirically relevant parameterizations.

Technical Details

RePEc Handle
repec:wly:emetrp:v:85:y:2017:i::p:991-1012
Journal Field
General
Author Count
3
Added to Database
2026-01-25