Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
We develop a testing procedure that is robust to identification quality in an instrumental quantile model. In order to reduce the computational burden, a multi-step approach is taken, and a two-step Anderson-Rubin (AR) statistic is considered. We then propose an orthogonal decomposition of the AR statistic, where the null distribution of each component does not depend on the assumption of a full rank of the Jacobian. Power experiments are conducted, and inferences on returns to schooling using the Angrist and Krueger data are considered as an empirical example.