Capturing information in extreme events

C-Tier
Journal: Economics Letters
Year: 2023
Volume: 231
Issue: C

Score contribution per author:

1.005 = (α=2.01 / 1 authors) × 0.5x C-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This study integrates information theory and extreme value theory to enhance the prediction of extreme events. Information-theoretic measures provide a foundation for model comparison in tails. The theoretical findings suggest that (1) the entropy of block maxima converges to the entropy of the generalized extreme value distribution, (2) the rate of convergence is controlled by its shape parameter, and (3) the entropy of block maxima is a monotonically decreasing function of the block size. Empirical analysis of E-mini S&P, 500 futures data evaluates the financial risk, capturing information content of extreme events using entropy and Kullback–Leibler divergence.

Technical Details

RePEc Handle
repec:eee:ecolet:v:231:y:2023:i:c:s0165176523003269
Journal Field
General
Author Count
1
Added to Database
2026-01-24