Uniqueness of asset prices in an exchange economy with unbounded utility

B-Tier
Journal: Economic Theory
Year: 1998
Volume: 12
Issue: 1
Pages: 103-122

Score contribution per author:

2.011 = (α=2.01 / 1 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper studies conditions under which the price of an asset is uniquely determined by its fundamental value - i.e., no bubbles can arise - in Lucas-type asset pricing models with unbounded utility. After discussing Gilles and LeRoy's (1992) example, we construct an example of a two-period, representative agent economy to demonstrate that bubbles can arise in a standard model if utility is unbounded below, in which case the stochastic Euler equation may be violated. In an infinite horizon framework, we show that bubbles cannot arise if the optimal sequence of asset holdings can be lowered uniformly without incurring an infinite utility loss. Using this result, we develop conditions for the nonexistence of bubbles. The conditions depend exclusively on the asymptotic behavior of marginal utility at zero and infinity. They are satisfied by many unbounded utility functions, including the entire CRRA (constant relative risk aversion) class. The Appendix provides a complete market version of our two-period example.

Technical Details

RePEc Handle
repec:spr:joecth:v:12:y:1998:i:1:p:103-122
Journal Field
Theory
Author Count
1
Added to Database
2026-01-25