Projection-based inference with particle swarm optimization

B-Tier
Journal: Journal of Economic Dynamics and Control
Year: 2021
Volume: 128
Issue: C

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper introduces Particle Swarm Optimization [PSO] to econometrics with focus on projection-based test inversion. Econometricians have developed such methods to enable a robust analysis of imperfectly identified models. Despite important theoretical breakthroughs, computational and numerical tool kits have not followed suit. This paper compares stochastic solvers including PSO on speed and accuracy for the problem. Empirically, the paper analyzes a three-equation New Keynesian model for the U.S.. Results are confirmed via a synthetic sample with relevant and weak instruments. In contrast to PSO, we find that popular solvers may converge to local optima suggesting misleading decisions on the nature of the New Keynesian Phillips Curve, determinacy of monetary policies, and the persistence of the Taylor rule. Results confirm that far more attention needs to be paid to numerical precision as test inversion duly gains popularity in applied econometrics.

Technical Details

RePEc Handle
repec:eee:dyncon:v:128:y:2021:i:c:s0165188921000737
Journal Field
Macro
Author Count
2
Added to Database
2026-01-25