Improving forecast accuracy of financial vulnerability: PLS factor model approach

C-Tier
Journal: Economic Modeling
Year: 2020
Volume: 88
Issue: C
Pages: 341-355

Authors (2)

Kim, Hyeongwoo (Auburn University) Ko, Kyunghwan (not in RePEc)

Score contribution per author:

0.503 = (α=2.01 / 2 authors) × 0.5x C-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We present a factor augmented forecasting model for assessing the financial vulnerability in Korea. Dynamic factor models often extract latent common factors from a large panel of time series data via the method of the principal components (PC). Instead, we employ the partial least squares (PLS) method that estimates target specific common factors, utilizing covariances between predictors and the target variable. Applying PLS to 198 monthly frequency macroeconomic time series variables and the Bank of Korea's Financial Stress Index (KFSTI), our PLS factor augmented forecasting models consistently outperformed the random walk benchmark model in out-of-sample prediction exercises in all forecast horizons we considered. Our models also outperformed the autoregressive benchmark model in short-term forecast horizons. We expect our models would provide useful early warning signs of the emergence of systemic risks in Korea's financial markets.

Technical Details

RePEc Handle
repec:eee:ecmode:v:88:y:2020:i:c:p:341-355
Journal Field
General
Author Count
2
Added to Database
2026-01-25