Efficient size correct subset inference in homoskedastic linear instrumental variables regression

A-Tier
Journal: Journal of Econometrics
Year: 2021
Volume: 221
Issue: 1
Pages: 78-96

Score contribution per author:

4.022 = (α=2.01 / 1 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We show that Moreira’s (2003) conditional critical value function for likelihood ratio (LR) tests on the structural parameter in homoskedastic linear instrumental variables (IV) regression provides a bounding critical value function for subset LR tests on one structural parameter of several for general homoskedastic linear IV regression. The resulting subset LR test is size correct under weak identification and efficient under strong identification. A power study shows that it outperforms the subset Anderson–Rubin test with conditional critical values from Guggenberger et al. (2019a) when the structural parameters are reasonably identified and has slightly less power when identification is weak.

Technical Details

RePEc Handle
repec:eee:econom:v:221:y:2021:i:1:p:78-96
Journal Field
Econometrics
Author Count
1
Added to Database
2026-01-25