Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
This note provides an elementary short proof of the Knaster-Kuratowski-Mazurkiewicz-Shapley (K-K-M-S) Theorem based on Brouwer's fixed point theorem. The usefulness of the K-K-M-S Theorem lies in the fact that it can be applied to prove directly Scarf's (1967) Theorem, i.e., any balanced game has a non-empty core. We also show that the K-K-M-S Theorem and the Gale-Nikaido-Debreu Theorem can be proved by the same arguments.