Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
There are four types of dominance depending on whether domination is strict or weak and whether the dominating strategy is pure or mixed. Letting d vary over these four types of dominance, we say that a player is d-dominance rational when she does not play a strategy that is d-dominated relative to what she knows. For weak dominance by a mixed strategy, Stalnaker (1994) introduced a process of iterative maximal elimination of certain profiles that we call here flaws. We define here, analogously, d-flaws for each type of dominance d, and show that for each d, iterative elimination of d-flaws is order independent. We then show that the characterization of common knowledge of d-dominance rationality is the same for each d. A strategy profile can be played when d-dominance rationality is commonly known if and only if it survives an iterative elimination of d-flaws.