Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
In this paper, we introduce the notion of a linked domain and prove that a non-manipulable social choice function defined on such a domain must be dictatorial. This result not only generalizes the Gibbard-Satterthwaite Theorem but also demonstrates that the equivalence between dictatorship and non-manipulability is far more robust than suggested by that theorem. We provide an application of this result in a particular model of voting. We also provide a necessary condition for a domain to be dictatorial and use it to characterize dictatorial domains in the cases where the number of alternatives is three. Copyright Springer-Verlag Berlin Heidelberg 2003