Machine Labor

A-Tier
Journal: Journal of Labor Economics
Year: 2022
Volume: 40
Issue: S1
Pages: S97 - S140

Authors (2)

Score contribution per author:

2.011 = (α=2.01 / 2 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

The utility of machine learning (ML) for regression-based causal inference is illustrated by using lasso to select control variables for estimates of college characteristics’ wage effects. Post-double-selection lasso offers a path to data-driven sensitivity analysis. ML also seems useful for an instrumental variables (IV) first stage, since two-stage least squares (2SLS) bias reflects overfitting. While ML-based instrument selection can improve on 2SLS, split-sample IV and limited information maximum likelihood do better. Finally, we use ML to choose IV controls. Here, ML creates artificial exclusion restrictions, generating spurious findings. On balance, ML seems ill-suited to IV applications in labor economics.

Technical Details

RePEc Handle
repec:ucp:jlabec:doi:10.1086/717933
Journal Field
Labor
Author Count
2
Added to Database
2026-01-24